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Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and
has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress
systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug
seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems
(corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain anti-
stress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neu-
ropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and
antistress systems may play a key role in the transition to and maintenance of drug dependence once initi-
ated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for
treatment and prevention of addiction and insights into the organization and function of basic brain emotional
circuitry.
1. Drugs, Addiction, and Stress: Introduction and
Definitions
1.2. Dynamics of Addiction

Drug addiction is a chronically relapsing disorder characterized

by compulsive drug use and loss of control over drug intake.

Addiction comprises three stages: preoccupation/anticipation,

binge/intoxication, and withdrawal/negative affect, in which im-

pulsivity often dominates at the early stages, and compulsivity

dominates at terminal stages. As an individual moves from im-

pulsivity to compulsivity, a shift occurs from positive reinforce-

ment driving the motivated behavior to negative reinforcement

driving the motivated behavior (Koob, 2004). These three stages

are conceptualized as feeding into one other, becoming more in-

tense, and ultimately leading to the pathological state known as

addiction (Koob and Le Moal, 1997). The preoccupation/antici-

pation (craving) stage of the addiction cycle has long been hy-

pothesized to be a key element of relapse in humans and defines

addiction as a chronic relapsing disorder (Tables 1 and 2).

Different drugs produce different patterns of addiction that en-

gage different components of the addiction cycle, depending on

dose, length of use, and even cultural factors. With opioids, the

classic drugs of addiction, a pattern of compulsive intravenous

or smoked drug taking evolves that includes intense intoxication,

the development of tolerance, escalation in intake, and profound

dysphoria, physical discomfort, and somatic and emotional with-

drawal signs during abstinence. A pattern develops in which the

drug must be obtained to avoid the severe dysphoria and dis-

comfort experienced during abstinence. Alcohol addiction or al-

coholism can follow a similar trajectory, but the pattern of oral

drug taking often is characterized by binges of alcohol intake

that can be daily episodes or prolonged days of heavy drinking

and is characterized by a severe somatic and emotional with-

drawal syndrome. Nicotine addiction contrasts with the above

patterns, with little obvious signs of the binge/intoxication stage,

and has a pattern of intake characterized by highly titrated intake

of the drug except during periods of sleep and negative emo-
tional states during abstinence, including dysphoria, irritability,

and intense craving. Marijuana addiction follows a pattern similar

to opioids and tobacco, with a significant intoxication stage, but

as chronic use continues, subjects begin to show a pattern of

use characterized by chronic intoxication during waking hours

followed by a withdrawal that includes dysphoria, irritability,

and sleep disturbances. Psychostimulant addiction (cocaine

and amphetamines) shows a pattern with a salient binge/intoxi-

cation stage. Such binges can be hours or days in duration

and often are followed by a withdrawal (‘‘crash’’) characterized

by extreme dysphoria and inactivity. Intense craving for all drugs

can anticipate withdrawal (i.e., with opioids, alcohol, nicotine) or

often occurs after acute withdrawal when craving is driven by

both environmental cues signifying the availability of the drug

and internal states linked to negative emotional states and

stress.

Animal models of the symptoms of addiction on specific drugs

such as stimulants, opioids, alcohol, nicotine, and D9-tetrahy-

drocannabinol can be defined by models relevant to different

stages of the addiction cycle (Shippenberg and Koob, 2002)

(Table 2). Animal models for the binge/intoxication stage of the

addiction cycle can be conceptualized as measuring acute

drug reward, in which reward can be defined as a positive rein-

forcer with some additional emotional value, such as pleasure

(Table 1). Animal models of reward and reinforcement are exten-

sive and well validated and include intravenous drug self-admin-

istration, conditioned place preference, and decreased brain

reward thresholds. Animal models of the withdrawal/negative

affect stage include conditioned place aversion (rather than pref-

erence) to precipitated withdrawal or spontaneous withdrawal

from chronic administration of a drug, increases in brain reward

thresholds, and dependence-induced increases in drug seeking

(Table 2). Rodents will increase intravenous or oral self-adminis-

tration of drugs with extended access to the drugs and during

withdrawal from the dependent state, measured both by in-

creased drug administration and increased work to obtain the
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Table 1. Definitions

Term Definition

Addiction Also known as substance dependence, defined as a chronically relapsing disorder characterized by (1)

compulsion to seek and take the drug and (2) loss of control in limiting intake. A third key element

included by some, and particularly relevant to the present review, is the emergence of a negative

emotional state (e.g., dysphoria, anxiety, irritability) when access to the drug is prevented (defined here

as dependence) (Koob and Le Moal, 1997, 2008). Addiction throughout this article will be used

interchangeably with substance dependence (as currently defined by the Diagnostic and Statistical

Manual of Mental Disorders, 4th edition; American Psychiatric Association, 1994) and ‘‘dependence’’

with a lower-case ‘‘d’’ will be used to define the manifestation of a withdrawal syndrome when chronic

drug administration is stopped (Koob and Le Moal, 2006).

Impulsivity Defined behaviorally as a tendency toward rapid, unintended reactions to internal and external stimuli

without regard for the negative consequences of these reactions.

Compulsivity Defined as elements of behavior that result in perseveration in responding in the face of adverse

consequences or perseveration in the face of incorrect responses in choice situations.

Positive reinforcer Defined as any event that increases the probability of a response.

Negative reinforcer Defined as the process by which removal of an aversive stimulus (e.g., negative emotional state of drug

withdrawal) increases the probability of a response (e.g., dependence-induced drug intake).

Opponent process Hedonic, positive affective, or negative affective emotional states, once initiated, were hypothesized to

be modulated automatically by the central nervous system with mechanisms that reduce the intensity of

the emotional state. For addiction, the a-process consists of positive hedonic responses and occurs

shortly after presentation of the drug and correlates closely with the stimulus intensity and quality and

duration of the reinforcer and shows tolerance. In contrast, the b-process reflects a negative emotional

state (dysphoria) that appears after the a-process has terminated. The b-process is sluggish in onset,

slow to build up to an asymptote, slow to decay, and shows sensitization (i.e., becomes larger with

repeated exposure).

Stress Defined as responses to demands (usually noxious) upon the body (Selye, 1936) that historically have

been defined by various physiological changes that include activation of the hypothalamic-pituitary-

adrenal (HPA) axis. This activation is characterized by the release of adrenal steroids triggered by the

release of adrenocorticotropic hormone (ACTH) from the pituitary. ACTH release, in turn, is controlled by

the liberation of hypothalamic corticotropin-releasing factor (CRF) into the pituitary portal system of the

median eminence. Another widely adopted definition of stress is any alteration in psychological

homeostatic processes (Burchfield, 1979). The construct of stress subsequently has been linked to the

construct of arousal and as such may represent the extreme pathological continuum of overactivation of

the body’s normal activational or emotional systems (Hennessy and Levine, 1979; Pfaff, 2006).

Within-system neuroadaptation Repeated drug administration elicits an opposing reaction within the same system in which the drug

elicits its primary reinforcing actions. For example, if the synaptic availability of the neurotransmitter

dopamine is responsible for the acute reinforcing actions of cocaine, then the within-system opponent

process neuroadaptation would be a decrease in synaptic availability of dopamine.

Between-system neuroadaptation Repeated drug administration recruits a different neurochemical system, one not involved in the acute

reinforcing effects of the drug but that when activated or engaged acts in opposition to the primary

reinforcing effects of the drug. For example, chronic cocaine may activate the neuropeptide dynorphin,

and dynorphin produces dysphoric-like effects that would be opposite to those of dopamine.
drug. Such increased self-administration in dependent animals

has been observed with cocaine, methamphetamine, nicotine,

heroin, and alcohol (Ahmed et al., 2000; Ahmed and

Koob, 1998; Kitamura et al., 2006; O’Dell and Koob, 2007; Rob-

erts et al., 2000). This model will be a key element for the evalu-

ation of the role of brain stress systems in addiction outlined

below.

Animal models of craving (preoccupation/anticipation stage)

involve reinstatement of drug seeking following extinction from

the drugs themselves, by cues linked to the drug, and from expo-

sure to stressors (Shaham et al., 2003) (Table 1). Drug-induced

reinstatement first involves extinction and then a priming injec-

tion of the drug. Latency to reinitiate responding or the amount

of responding on the previously extinguished lever are hypothe-
12 Neuron 59, July 10, 2008 ª2008 Elsevier Inc.
sized to reflect the motivation for drug-seeking behavior. Simi-

larly, drug-paired or drug-associated stimuli can reinitiate

drug-seeking behavior (cue-induced reinstatement). Stress-

induced reinstatement involves the application of acute

stressors that reinitiate drug-seeking behavior in animals that

have been extinguished from the drug. These stressors can in-

clude physical stressors such as footshock, psychological

stressors such as restraint, or pharmacological stressors such

as yohimbine (Shaham et al., 2003). In rats with a history of

dependence, protracted abstinence can be defined as a period

after acute physical withdrawal has disappeared in which eleva-

tions in ethanol intake over baseline and increased stress re-

sponsivity persist (e.g., 2–8 weeks postwithdrawal from chronic

ethanol). Protracted abstinence has been linked to increased



Neuron

Review
Table 2. Stages of the Addiction Cycle

Stage Source of Reinforcement Animal Models

Binge/intoxication positive reinforcement conditioned place preference, drug

self-administration, decreased

reward thresholds

Withdrawal/negative affect negative reinforcement increased anxiety-like responses, increased reward thresholds,

conditioned place aversion, increased

self-administration in dependence

Preoccupation/anticipation conditioned positive reinforcement drug-induced reinstatement, cue-induced,

reinstatement, stress-induced reinstatement

conditioned negative reinforcement protracted abstinence
brain reward thresholds and increases in sensitivity to anxiety-

like behavior that have been shown to persist after acute with-

drawal in animals with a history of dependence. Stress-induced

reinstatement of drug seeking and stress-induced reinstatement

of anxiety-like states during protracted abstinence will be used in

the present review to explore the role of the brain stress systems

in the preoccupation-anticipation (craving) stage of the addiction

cycle (Table 2).

The thesis of this review is that a key element of the addiction

process involves a profound interaction with brain stress sys-

tems and dysregulation of brain antistress systems to produce

the negative emotional state that becomes the powerful motiva-

tion for drug seeking associated with compulsive use in the with-

drawal/negative affect and preoccupation/anticipation (craving)

stages of the addiction cycle. Chronic use of drugs of abuse

has long been associated with exaggerated responses to

stressors, and these exaggerated responses contribute to

addiction (Himmelsbach, 1941). Delineation of key elements of

not only hormonal but also brain stress neurocircuits have laid

the foundation for new insights into the pathophysiology of

addiction.

1.3. Motivation, Opponent Process, and Stress

Motivation is a state that guides behavior in relationship to

changes in the environment (Hebb, 1949) and shares key com-

mon characteristics with our concepts of arousal (Pfaff, 2006).

Motivational states gain energy both from the external milieu (in-

centives) or internal milieu (central motive states or drives). As

such, motivation or motivational states are not constant and

vary over time but have long been hypothesized to have homeo-

static constraints. In the context of temporal dynamics, Solomon

and Corbit inextricably linked the concept of motivation with

hedonic, affective, or emotional states in addiction by the oppo-

nent process theory of motivation (Solomon and Corbit, 1974)

(Table 1).

More recently, opponent process theory has been expanded

into the domains of the neurocircuitry and neurobiology of drug

addiction from a physiological perspective (Koob and Le Moal,

2008). Counteradaptive processes such as opponent process

that are part of the normal homeostatic limitation of reward func-

tion are hypothesized to fail to return to the normal homeostatic

range and thus produce the reward deficits that are prominent in

addiction. These counteradaptive processes were hypothesized

to be mediated by two processes: within-system neuroadapta-

tions and between-system neuroadaptations (Koob and Bloom,

1988) (Table 1).
For the present review, the systems activated as between-

system neuroadaptations are hypothesized to involve the brain

stress systems and the brain antistress systems. These circuits

also can be conceptualized as an antireward homeostatic mech-

anism (Koob and Le Moal, 2008). In this framework, addiction is

conceptualized as a cycle of spiraling dysregulation of brain

reward/antireward mechanisms that progressively increases,

resulting in the compulsive use of the drug. The purpose of this

review is to explore the neuroadaptational changes that occur

in the brain stress and antistress systems to account for the

negative emotional state that provides motivation for the

compulsivity of addiction.

1.4 Hypothalamic-Pituitary-Adrenal Axis

The hypothalamic-pituitary-adrenal (HPA) axis is defined by

three major structures: the paraventricular nucleus of the hypo-

thalamus, the anterior lobe of the pituitary gland, and the adrenal

gland (for review, see Turnbull and Rivier, 1997). Neurosecretory

neurons in the medial parvocellular subdivision of the paraven-

tricular nucleus synthesize and release CRF into the portal blood

vessels that enter the anterior pituitary gland. Binding of CRF to

the CRF1 receptor on pituitary corticotropes induces the release

of adrenocorticotropic hormone (ACTH) into the systemic circu-

lation. ACTH, in turn, stimulates glucocorticoid synthesis and

secretion from the adrenal cortex. Vasopressin released from

parvocellular neurons of the paraventricular nucleus produces

synergistic effects on ACTH release that are mediated by vaso-

pressin V1b receptors. The HPA axis is finely tuned via negative

feedback from circulating glucorticoids that act on the glucocor-

ticoid receptor, a cytosolic protein that acts via the nucleus and

transcriptional mechanisms, in two main brain areas: the para-

ventricular nucleus and the hippocampus. The hypophysiotropic

neurons of the paraventricular nucleus of the hypothalamus are

innervated by numerous afferent projections, including from

brainstem, other hypothalamic nuclei, and forebrain limbic

structures.

1.5. Extended Amygdala: Interface of Stress

and Addiction

New functional observations have provided support for the

hypothesis that the neuroanatomical substrates for many of

the motivational effects of opponent processes associated

with drug dependence may involve a common neural circuitry

that forms a separate entity within the basal forebrain, termed

the ‘‘extended amygdala’’ (Koob and Le Moal, 2001). The ex-

tended amygdala represents a macrostructure that is composed

of several basal forebrain structures: the bed nucleus of the stria
Neuron 59, July 10, 2008 ª2008 Elsevier Inc. 13
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terminalis, the central medial amygdala, and a transition zone in

the posterior part of the medial nucleus accumbens (i.e., poste-

rior shell) (Heimer and Alheid, 1991). These structures have sim-

ilarities in morphology, immunohistochemistry, and connectivity,

and they receive afferent connections from limbic cortices, hip-

pocampus, basolateral amygdala, midbrain, and lateral hypo-

thalamus. The efferent connections from this complex include

the posterior medial (sublenticular) ventral pallidum, ventral teg-

mental area, various brainstem projections, and perhaps most

intriguing from a functional point of view, a considerable projec-

tion to the lateral hypothalamus (Heimer and Alheid, 1991). Key

elements of the extended amygdala include not only neurotrans-

mitters associated with the positive reinforcing effects of drugs

of abuse but also major components of the brain stress systems

associated with the negative reinforcement of dependence

(Koob and Le Moal, 2005). The role of specific neuropharmaco-

logical mechanisms associated with the brain stress systems

and the extended amygdala will be explored in the sections

below.

2. Brain Stress Systems and Addiction: Corticotropin-
Releasing Factor, Norepinephrine, Orexin, Vasopressin,
Dynorphin
2.1. Corticotropin-Releasing Factor

Corticotropin-releasing factor is a 41 amino acid polypeptide

that controls hormonal, sympathetic, and behavioral responses

to stressors. Substantial CRF-like immunoreactivity is present

in the neocortex, extended amygdala, medial septum, hypothal-

amus, thalamus, cerebellum, and autonomic midbrain and hind-

brain nuclei (Swanson et al., 1983) (Figure 1). The CRF1 receptor

has abundant, widespread expression in the brain that overlaps

significantly with the distribution of CRF and urocortin 1. The dis-

covery of other peptides with structural homology, notably the

urocortin family (urocortins 1, -2, and -3), has suggested broad

neurotransmitter roles for the CRF systems in behavioral and

autonomic responses to stress (Bale and Vale, 2004) (see Sup-

plemental Data available online). Urocortin 1 binds both to

CRF1 and CRF2 receptors and has a different neuroanatomical

distribution than CRF. The type 2 urocortins, urocortin 2 (Reyes

et al., 2001) and urocortin 3 (Lewis et al., 2001), differ from uro-

cortin 1 and CRF in their neuroanatomical, neuropharmacologi-

cal, and distribution profiles and are endogenous selective

CRF2 agonists.

CRF in the paraventricular nucleus of the hypothalamus con-

trols the pituitary adrenal response to stress (Turnbull and Rivier,

1997). Progressive changes in the HPA axis are observed during

the transition from acute administration to chronic administration

of drugs of abuse. Acute administration of most drugs of abuse in

animals activates the HPA axis and may first facilitate activity in

the brain motivational circuits, facilitate drug reward, and as a re-

sult facilitate acquisition of drug-seeking behavior (Piazza et al.,

1993; Goeders, 1997; Piazza and Le Moal, 1997; Fahlke et al.,

1996). With repeated administration of cocaine, opiates, nico-

tine, and alcohol, these acute changes are blunted or dysregu-

lated (Kreek and Koob, 1998; Rasmussen et al., 2000; Goeders,

2002; Koob and Kreek, 2007; Sharp and Matta, 1993; Semba

et al., 2004). An early hypothesis was that atypical responsivity
14 Neuron 59, July 10, 2008 ª2008 Elsevier Inc.
to stressors contributes to the persistence and relapse to cycles

of opioid dependence, and subsequently this hypothesis was

extended to other drugs of abuse (Kreek and Koob, 1998).

Importantly for the current thesis, high circulating levels of

glucocorticoids can feed back to shut off the HPA axis but can

‘‘sensitize’’ CRF systems in the central nucleus of the amygdala

and norepinephrine systems in the basolateral amygdala that

are known to be involved in behavioral responses to stressors

(Imaki et al., 1991; Makino et al., 1994; Swanson and Simmons,

1989; Schulkin et al., 1994; Shepard et al., 2000). Thus, while ac-

tivation of the HPA axis may characterize initial drug use and the

binge/intoxication stage of addiction, the HPA activation also

can lead to subsequent activation of extrahypothalamic brain

stress systems that characterize the withdrawal/negative affect

stage of addiction (Kreek and Koob, 1998; Koob and Le Moal,

2005; Koob and Kreek, 2007) (Figure 2).

Substantial evidence now suggests that brain extrahypotha-

lamic CRF systems are activated during the development of

dependence on alcohol, and this activation has motivational

significance. During ethanol withdrawal, CRF release increases

within the central nucleus of the amygdala and bed nucleus

of the stria terminalis of dependent rats (Funk et al., 2006;

Merlo-Pich et al., 1995; Olive et al., 2002) (Figures 1B and 2),

and this dysregulation of brain CRF systems is hypothesized

to underlie both the enhanced anxiety-like behaviors and en-

hanced ethanol self-administration associated with ethanol

withdrawal. Supporting this hypothesis, systemic CRF1 antag-

onists (Overstreet et al., 2004) or the subtype nonselective CRF

receptor antagonists a-helical CRF9-41 and D-Phe CRF12-41

when injected intracerebroventricularly (Baldwin et al., 1991)

or directly into the central nucleus of the amygdala (Rassnick

et al., 1993) reduced ethanol withdrawal-induced anxiety-like

behavior.

Exposure to repeated cycles of chronic ethanol vapor to

induce dependence substantially increased ethanol intake in

rats, both during acute withdrawal and during protracted absti-

nence (2 weeks postacute withdrawal) (O’Dell et al., 2004;

Rimondini et al., 2002). Intracerebroventricular administration

and direct intracerebral administration into the central nucleus

of the amygdala of a CRF1/CRF2 peptide antagonist selectively

blocked the dependence-induced increase in ethanol self-

administration during acute withdrawal (Valdez et al., 2004).

Systemic injections of small-molecule CRF1 antagonists also

blocked the increased ethanol intake associated with acute

ethanol withdrawal (Knapp et al., 2004; Funk et al., 2007;

Richardson et al., 2008) (Figure 3). A CRF2 agonist injected

into the central nucleus of the amygdala had a similar effect

in reducing the increase in ethanol self-administration associ-

ated with acute withdrawal, suggesting a role for CRF2 recep-

tors opposite to that of CRF1 receptors in modulating ethanol

intake in dependent animals (Funk and Koob, 2007). CRF an-

tagonists injected intracerebroventricularly or systemically also

blocked the potentiated anxiety-like responses to stressors

observed during protracted abstinence (Breese et al., 2005;

Valdez et al., 2003) and the increased ethanol self-administra-

tion associated with protracted abstinence (Valdez et al.,

2004; Funk et al., 2006). None of the CRF antagonists had

any effects on ethanol self-administration in nondependent
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Figure 1. Localizations and Projections
of Brain Stress Systems—Corticotropin-
Releasing Factor
(A) The major CRF-stained cell groups (dots) and
fiber systems in the rat brain. Most of the immuno-
reactive cells and fibers appear to be associated
with systems that regulate the output of the pitui-
tary and the autonomic nervous system and with
cortical interneurons. Most of the longer central fi-
bers course either ventrally through the medial
forebrain bundle and its caudal extension in the re-
ticular formation, or dorsally through a periventric-
ular system in the thalamus and brainstem central
gray. The direction of fibers in these systems is un-
clear because they appear to interconnect regions
that contain CRF-stained cell bodies. Three adja-
cent CRF-stained cell groups—laterodorsal teg-
mental nucleus, locus coeruleus, parabrachial nu-
cleus—lie in the dorsal pons. Uncertain is which of
these cell groups contributes to each of the path-
ways shown, and which of them receives inputs
from the same pathways. Modified with permis-
sion from Swanson et al. (1983). ac, anterior com-
missure; BST, bed nucleus of the stria terminalis;
cc, corpus callosum; CeA, central nucleus of the
amygdala; CG, central gray; DR, dorsal raphe;
DVC, dorsal vagal complex; HIP, hippocampus;
LDT, laterodorsal tegmental nucleus; LHA, lateral
hypothalamic area; ME, median eminence; mfb,
medial forebrain bundle; MID THAL, midline tha-
lamic nuclei; MPO, medial preoptic area; MR,
median raphe; MVN, medial vestibular nucleus;
PB, parabrachial nucleus; POR, perioculomotor
nucleus; PP, peripeduncular nucleus; PVN, para-
ventricular nucleus; SEPT, septal region; SI,
substantia innominata; st, stria terminalis.
(B) Role of corticotropin-releasing factor in
dependence.
rats (Valdez et al., 2004). These data suggest an important role

for CRF, primarily within the central nucleus of the amygdala,

in mediating the increased self-administration associated with

dependence.

Increased expression of CRF1 receptors is associated with

stress-induced ethanol intake in Marchigian Sardinian (msP)

alcohol-preferring rats (Hansson et al., 2006) as well as in nonge-

netically selected animals in a postdependent state (Sommer

et al., 2008). In the genetically selected msP rat line, high ethanol

preference was correlated with a genetic polymorphism of the

crhr1 promoter and an increase in CRF1 density in the amygdala

as well as increased sensitivity to stress and increased sensitivity

to a CRF1 antagonist (Hansson et al., 2006). In nongenetically se-

lected rats exposed to repeated cycles of ethanol intoxication

and dependence, a CRF1 antagonist blocked the increased eth-

anol intake associated with protracted abstinence, an effect that

coincided with upregulation of the CRF1 gene and downregula-

tion of the CRF2 gene in the amygdala (Sommer et al., 2008).

Adolescents homozygous for the C allele of R1876831 located

on an intron that could potentially influence transcription of the

CRF1 receptor gene drank more alcohol per occasion and had

higher lifetime rates of heavy drinking in relation to negative life

events than subjects carrying the T allele (Blomeyer et al.,

2008). These results suggest the exciting possibility that certain

single-nucleotide polymorphisms in the human population may
predict vulnerability to certain subtypes of excessive drinking

syndromes and, perhaps more exciting, may predict responsive-

ness to the use of CRF receptor antagonists in the treatment of

alcoholism.

Similar interactions with CRF have been observed with the

dependence associated with cocaine, heroin, and nicotine.

Chronic administration of cocaine produces an anxiety-like re-

sponse that is blocked by intracerebroventricular administration

of a CRF1/CRF2 antagonist (Sarnyai et al., 1995; Basso et al.,

1999). A CRF1/CRF2 peptide antagonist injected into the central

nucleus of the amygdala and systemic administration of CRF1

antagonists blocked conditioned place aversion associated

with precipitated opiate withdrawal (Heinrichs et al., 1995; Stinus

et al., 2005). Opioid withdrawal also increased CRF release in the

amygdala, measured by in vivo microdialysis (Weiss et al., 2001).

CRF1 knockout mice failed to show conditioned place aversion

to opioid withdrawal and failed to show an opioid-induced in-

crease in dynorphin mRNA in the nucleus accumbens (Contarino

and Papaleo, 2005). A CRF antagonist injected intracerebroven-

tricularly blocked the anxiogenic-like effects of withdrawal from

bolus injections of nicotine (Tucci et al., 2003). The anxiogenic-

like effects of precipitated withdrawal from chronic nicotine

also were blocked by a CRF1 receptor antagonist (George

et al., 2007) (Figure 2). A CRF1/CRF2 peptide antagonist also

blocked the nicotine withdrawal-induced increase in brain
Neuron 59, July 10, 2008 ª2008 Elsevier Inc. 15
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Figure 2. Effects of Drug Withdrawal on
CRF Levels in the Amygdala
(A) Effects of ethanol withdrawal on CRF-like im-
munoreactivity in the rat amygdala determined
by microdialysis. Dialysate was collected over
four 2 hr periods regularly alternated with nonsam-
pling 2 hr periods. The four sampling periods cor-
responded to the basal collection (before removal
of ethanol), and 2–4 hr, 6–8 hr, and 10–12 hr after
withdrawal. Fractions were collected every 20
min. Data are represented as mean ± SEM (n = 5
per group). ANOVA confirmed significant differ-
ences between the two groups over time (p <
0.05). Taken with permission from Merlo-Pich
et al. (1995).
(B) Mean (±SEM) dialysate CRF concentrations
collected from the central nucleus of the amygdala
of rats during baseline, 12 hr cocaine self-adminis-
tration, and a subsequent 12 hr withdrawal period
(Cocaine group, n = 5). CRF levels in rats with the
same history of cocaine self-administration train-
ing and drug exposure but not given access to co-
caine on the test day (Control group, n = 6). Data
are expressed as percentages of basal CRF con-
centrations. Dialysates were collected over 2 hr
periods alternating with 1 hr nonsampling periods
shown by the timeline at the top. During cocaine
self-administration, dialysate CRF concentrations
in the cocaine group were decreased by about
25% compared with control animals. In contrast,
termination of access to cocaine resulted in a sig-
nificant increase in CRF release, which began �5
hr post-cocaine and reached about 400% of pre-
session baseline levels at the end of the with-
drawal session. *p < 0.05, **p < 0.01, ***p <
0.001. Simple effects after overall mixed-factorial
analysis of variance. Taken with permission from
Richter and Weiss (1999).
(C) Effects of cannabinoid CB1 antagonist SR
141716A (3 mg/kg) on CRF release from the cen-
tral nucleus of the amygdala in rats pretreated for
14 days with cannabinoid CB1 agonist HU-210
(100 mg/kg). Cannabinoid withdrawal induced by

SR 141716A was associated with increased CRF release (*p < 0.005, n = 5–8). Vehicle injections did not alter CRF release (n = 5–7). Data were standardized
by transforming dialysate CRF concentrations into percentages of baseline values based on averages of the first four fractions. Data are shown as
mean ± SEM. Taken with permission from Rodriguez de Fonseca et al. (1997).
(D) Effects of morphine withdrawal on CRF release in the central nucleus of the amygdala. Withdrawal was precipitated by administration of naltrexone (0.1 mg/
kg) in rats prepared with chronic morphine pellet implants. Data are shown as mean ± SEM. Taken with permission from Weiss et al. (2001).
(E) Effect of mecamylamine (1.5 mg/kg, i.p.) precipitated nicotine withdrawal on CRF release in the central nucleus of the amygdala measured by in vivo micro-
dialysis in chronic nicotine pump-treated (nicotine-dependent, n = 7) and chronic saline pump-treated (nondependent, n = 6) rats. *p < 0.05 compared with non-
dependent. Data are shown as mean ± SEM. Taken with permission from George et al. (2007).
reward thresholds (Bruijnzeel et al., 2007). Continuous access

to intravenous self-administration of cocaine for 12 hr, precipi-

tated opioid withdrawal, and precipitated nicotine withdrawal

increased CRF release in the amygdala during the withdrawal,

measured by in vivo microdialysis (Richter and Weiss, 1999;

Weiss et al., 2001; George et al., 2007) (Figure 2). Systemic

administration of CRF1 antagonists reversed the increased

self-administration of cocaine, heroin, and nicotine associated

with extended access (Specio et al., 2008; George et al., 2007;

T.N. Greenwell, C.K. Funk, P. Cottone, H.N. Richardson, S.A.

Chen, K. Rice, M.J. Lee, E.P. Zorrilla, and G.F.K., unpublished

data).

The role of CRF in stress-induced reinstatement of drug seek-

ing follows a pattern of results similar to its role in the anxiety-

like effects of acute withdrawal and dependence-induced

increases in drug intake (for reviews, see Shaham et al., 2003;

Lu et al., 2003) (Figure 1B). Mixed CRF1/CRF2 antagonists in-
16 Neuron 59, July 10, 2008 ª2008 Elsevier Inc.
jected intracerebroventricularly and/or CRF1 small-molecule

antagonists blocked stress-induced reinstatement of cocaine,

opiate, alcohol, and nicotine intake (Erb et al., 1998; Lu et al.,

2001; Shaham et al., 1997, 1998; Shalev et al., 2006; Le et al.,

2000; Liu and Weiss, 2002; Gehlert et al., 2007; Hansson

et al., 2006; Zislis et al., 2007). These effects have been repli-

cated with intracerebral injections of a mixed CRF1/CRF2 antag-

onist or small-molecule CRF1 antagonist into the bed nucleus of

the stria terminalis, median raphe, and ventral tegmental area,

but not the amygdala or nucleus accumbens (Le et al., 2002;

Erb et al., 2001; Erb and Stewart, 1999; Wang et al., 2006,

2007), suggesting that different sites, such as the bed

nucleus of the stria terminalis, median raphe, and ventral

tegmental area, may be important for stress-induced relapse,

in contrast to the role of CRF in dependence-induced drug

self-administration that has been localized to the central nucleus

of the amygdala (Funk et al., 2006).
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Figure 3. Effect of CRF1 Receptor
Antagonist on Alcohol and Nicotine
Self-Administration in Dependent Rats
(A) The effect of small-molecule CRF1 receptor
antagonist MPZP on operant self-administration
of alcohol (g/kg) in dependent and nondependent
rats. Testing was conducted when dependent
animals were in acute withdrawal (6–8 hr after
removal from vapors). Dependent animals self-ad-
ministered significantly more alcohol than nonde-
pendent animals. MPZP significantly reduced
alcohol self-administration only in dependent
animals. MPZP had no effect on alcohol self-ad-
ministration in nondependent animals. *p < 0.05
compared with nondependent controls. #p < 0.05
compared with vehicle (0 mg/kg MPZP). Data
are shown as mean ± SEM (n = 8 per vapor
treatment group). Taken with permission from
Richardson et al. (2008).

(B) The effect of small-molecule CRF1 receptor antagonist MPZP on nicotine self-administration during the active period in rats given extended access to
nicotine (*p < 0.05 versus baseline, #p < 0.05 versus post abstinence vehicle treatment, n = 8). Data are shown as mean ± SEM. Taken with permission from
George et al. (2007).
(C) The effect of small-molecule CRF1 receptor antagonist MPZP on cocaine intake in short-access (ShA) and long-access (LgA) rats. MPZP dose-dependently
reduced cocaine intake, achieving a maximal reduction of �20%, with a greater effect in LgA compared to ShA rats. A main effect for Access (*p < 0.05), a main
effect for MPZP dose (p < 0.001), and a significant access 3 MPZP dose interaction (+p < 0.05) were observed. Data are expressed as mean (+SEM) cocaine
intake (mg/kg). Taken with permission from Specio et al. (2008).
In summary, the extrahypothalamic CRF systems play a role in

mediating the anxiety-like effects of acute withdrawal, the in-

crease in drug-taking associated with dependence, and stress-

induced reinstatement for all major drugs of abuse, including

psychostimulants, opioids, ethanol, nicotine, and (with limited

studies) cannabinoids. Many of these effects have been local-

ized to the extended amygdala, and acute withdrawal from all

major drugs of abuse increased CRF release in the central nu-

cleus of the amygdala, measured by in vivo microdialysis

(Figures 1B and 2). This pattern of results suggests a major

role for CRF in mediating the negative emotional states that

have motivational significance in maintaining the dependent

state (Koob and Le Moal, 2005; Bruijnzeel and Gold, 2005).

2.2. Norepinephrine

Norepinephrine is a well established neurotransmitter in the

central nervous system with widespread distribution throughout

the brain (Figure 4) and has hypothesized functions in arousal,

attention, stress, anxiety, and affective disorders (see Supple-

mental Data). Cell bodies for the brain norepinephrine systems

originate in the dorsal pons and brainstem. The locus coeruleus

in the dorsal pons is the source of the dorsal noradrenergic path-

way to the cortices and hippocampus, and the brainstem projec-

tions converge in the ventral noradrenergic bundle to innervate

the basal forebrain and hypothalamus.

Norepinephrine binds to three distinct families of receptors—

a1, a2, and b-adrenergic—each with three receptor subtypes

(Rohrer and Kobilka, 1998). The a1 receptor family comprises

a1a, a1b, and a1d. Each subtype activates phospholipase C

and a2 and are coupled to the inositol phosphate second mes-

senger system via the G protein Gq. A centrally active a1 recep-

tor antagonist used in drug dependence research is prazosin.

The a2 family comprises a2a, a2b, and a2c. Each subtype inhibits

adenylate cyclase via coupling to the inhibitory G protein Gi.

Two a2 drugs commonly used in drug-dependence research

are the a2 agonist clonidine and the a2 antagonist yohimbine.

Because the a2 receptor is hypothesized to be presynaptic,
these drugs inhibit and facilitate noradrenergic function, respec-

tively. The b-adrenergic receptor family comprises b1, b2, and

b3. Each subtype activates adenylate cyclase via coupling to

the G protein Gs. Few b-adrenergic drugs have been explored

in drug-dependence research, with the exception of the b-ad-

renergic antagonist propranolol, presumably because of poor

brain bioavailability.

Precipitated morphine withdrawal increases norepinephrine

release in the central nucleus of the amygdala and bed nucleus

of the stria terminalis (Watanabe et al., 2003; Fuentealba et al.,

2000). The noradrenergic a2 agonist clonidine, a functional nor-

epinephrine antagonist with presynaptic actions, blocked the

suppression in responding for food during opioid withdrawal,

a measure of the motivational component of opioid withdrawal

(Sparber and Meyer, 1978) and the aversive stimulus effects

(conditioned place aversions) of opioid withdrawal (Schulteis

et al., 1998). Increased anxiety-like behavior was observed dur-

ing cocaine and morphine withdrawal in rats and was blocked by

the b-adrenergic antagonists propranolol and atenolol (Harris

and Aston-Jones, 1993; Gold et al., 1980). Similar effects were

observed with direct injections of a b-adrenergic antagonist di-

rectly into the central nucleus of the amygdala (Rudoy and van

Bockstaele, 2007). Norepinephrine functional antagonists (b1 an-

tagonist and a2 agonist) injected into the lateral bed nucleus of

the stria terminalis blocked precipitated opiate withdrawal-

induced place aversions (Delfs et al., 2000), and b-adrenergic

antagonists produced similar effects when injected into the cen-

tral nucleus of the amygdala (Watanabe et al., 2003). Studies that

further localized the effects of norepinephrine in driving opioid

withdrawal showed that ventral noradrenergic bundle lesions

attenuated opioid withdrawal (Delfs et al., 2000), but virtually

complete lesions of the dorsal noradrenergic bundle from the lo-

cus coeruleus with the neurotoxin 6-hydroxydopamine failed to

block the place aversion produced by opioid withdrawal-in-

duced place aversion (Caille et al., 1999). Consistent with the

studies of the aversive effects of opioid withdrawal, the a1
Neuron 59, July 10, 2008 ª2008 Elsevier Inc. 17
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norepinephrine antagonist prazosin reduced heroin self-admin-

istration in dependent rats with extended access (Greenwell

et al., 2008). Prazosin also selectively blocked the increased mo-

tivation to intravenously self-administer cocaine on a progres-

sive-ratio schedule in rats with extended access to the drug (a

procedure that is hypothesized to produce dependence) (Wee

et al., 2008). The extended-access rats showed a decreased

number of neurons with a1 adrenergic-like immunoreactivity in

the bed nucleus of the stria terminalis, suggesting that the a1 nor-

adrenergic system in the bed nucleus of the stria terminalis also

may be involved in cocaine dependence (Wee et al., 2008).

Substantial evidence also has accumulated suggesting that,

in animals and humans, central noradrenergic systems are

activated during acute withdrawal from ethanol and may have

motivational significance. Alcohol withdrawal in humans is asso-

ciated with activation of noradrenergic function, and the signs

and symptoms of alcohol withdrawal in humans are blocked by

postsynaptic b-adrenergic blockade (Romach and Sellers,

1991). Alcohol withdrawal signs also are blocked in animals

by administration of a1 antagonists and b-adrenergic antago-

nists and selective blockade of norepinephrine synthesis (Trzas-

kowska and Kostowski, 1983). In dependent rats, the a1 antag-

onist prazosin selectively blocked the increased drinking

associated with acute withdrawal (Walker et al., 2008). Thus,

converging data suggest that disruption of noradrenergic func-

tion blocks ethanol reinforcement, that noradrenergic neuro-

transmission is enhanced during ethanol withdrawal, and that

noradrenergic functional antagonists can block aspects of

ethanol withdrawal.

Figure 4. Localizations and Projections of
Brain Stress Systems—Norepinephrine
(A) Origin and distribution of central noradrenergic
pathways in the rat brain. Note noradrenergic cell
groups A1–A7, including the locus coeruleus
(A6). Modified with permission from Robbins and
Everitt (1995). PFC, prefrontal cortex; Sept, sep-
tum; NAc, nucleus accumbens; MFB, medial fore-
brain bundle; Hypo, hypothalamus; DNAB, dorsal
noradrenergic ascending bundle; VNAB, ventral
noradrenergic ascending bundle; CTT, central
tegmental tract.
(B) Role of norepinephrine in dependence.

Chronic nicotine self-administration

(23 hr access) increases norepinephrine

release in the paraventricular nucleus of

the hypothalamus and the amygdala,

measured by in vivo microdialysis (Fu

et al., 2001, 2003). However, during the

late maintenance phase of 23 hr access

to nicotine, norepinephrine release was

no longer elevated in the amygdala, sug-

gesting some desensitization/tolerance-

like effect (Fu et al., 2003).

The role of norepinephrine in stress-

induced reinstatement also follows a pat-

tern of results similar to its role in the anx-

iety-like effects of acute withdrawal and

dependence-induced increases in drug intake (for reviews, see

Shaham et al., 2003; Lu et al., 2003). The a2 adrenergic agonist

clonidine decreased stress-induced reinstatement of cocaine,

opiate, alcohol, and nicotine seeking (Le et al., 2005; Erb et al.,

2000; Shaham et al., 2000; Zislis et al., 2007). The a2 antagonist

yohimbine reinstated drug seeking (Lee et al., 2004). Limited

studies with intracerebral injections also have localized the

effects of functional blockade of norepinephrine system on

stress-induced reinstatement of morphine conditioned place

preferences to the bed nucleus of the stria terminalis (Wang

et al., 2001). b-adrenergic antagonists administered systemically

also blocked stress-induced reinstatement of cocaine seeking

(Leri et al., 2002).

2.3. Dynorphin/k Opioid System

Dynorphins are opioid peptides that derive from the prodynor-

phin precursor and contain the leucine (leu)-enkephalin sequ-

ence at the N-terminal portion of the molecule and are the

presumed endogenous ligands for the k opioid receptor

(Chavkin et al., 1982). Dynorphins have widespread distribution

in the central nervous system (Watson et al., 1982) (Figure 5)

and play a role in a wide variety of physiological systems, includ-

ing neuroendocrine regulation, pain regulation, motor activity,

cardiovascular function, respiration, temperature regulation,

feeding behavior, and stress responsivity (Fallon and Leslie,

1986) (see Supplemental Data). Possible products of prodynor-

phin processing include dynorphin A(1-17), dynorphin A(1-8),

and dynorphin B(1-29). Immunocytochemical distribution of

dynorphin A and -B shows significant cell bodies and terminals

in addiction-relevant brain areas such as the nucleus
18 Neuron 59, July 10, 2008 ª2008 Elsevier Inc.
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Figure 5. Localizations and Projections of
Brain Stress Systems—Dynorphin
(A) Schematic representation of the distribution of
prodynorphin-derived peptides in the rat central
nervous system determined by immunohisto-
chemistry. Prodynorphin codes for several active
opioid peptides containing the sequence of
[Leu]enkephalin, including dynorphin A, dynorphin
B, and a-neoendorphin. This precursor is distrib-
uted in neuronal systems found at all levels of
the neuraxis. Like their proenkephalin counter-
parts, the prodynorphin neurons form both short-
and long-tract projections often found in parallel
with the proenkephalin systems. Neuronal peri-
karya are shown as solid circles, and fibers-termi-
nals as short curved lines and dots. Modified with
permission from Khachaturian et al. (1985). AA,
anterior amygdala; ABL, basolateral nucleus of
amygdala; AC, anterior commissure; ACB, nu-
cleus accumbens; ACE, central nucleus of the
amygdala; ACO, cortical nucleus of amygdala;
AD, anterodorsal nucleus of thalamus; AL, anterior
lobe of pituitary; AM, anteromedial nucleus of thal-
amus; AMB, nucleus ambiguus; AME, medial nu-
cleus of the amygdala; AON, anterior olfactory nu-
cleus; ARC, arcuate nucleus; AV, anteroventral
nucleus of thalamus; BST, bed nucleus of the stria
terminalis; CC, corpus callosum; CGX, cingulate
cortex; CM, central-medial nucleus of thalamus;
COCH, cochlear nuclear complex; CPU, cau-
date-putamen; CST, corticospinal tract; DH, dor-
sal horn of spinal cord; DG, dentate gyrus; DM,
dorsomedial nucleus of hypothalamus; DNV, dor-
sal motor nucleus of vagus; DTN, dorsal tegmental
nucleus; ENT, entorhinal cortex; FN, fastigial nu-

cleus of cerebellum; FRX, frontal cortex; GL, glomerular layer of olfactory bulb; GP, globus pallidus; HM, medial habenular nucleus; HPC, hippocampus; IC, in-
ferior colliculus; IL, intermediate lobe of pituitary; IP, interpeduncular nuclear complex; LC, nucleus locus coeruleus; LG, lateral geniculate nucleus; LHA, lateral
hypothalamic area; LRN, lateral reticular nucleus; MF, mossy fibers of hippocampus; MFN, motor facial nucleus; MG, medial geniculate nucleus; ML, medial
lemniscus; MM, medial mammillary nucleus; MNT, mesencephalic nucleus of trigeminal; MVN, medial vestibular nucleus; NCU, nucleus cuneatus; NCX, neo-
cortex; NDB, nucleus of diagonal band; NL, neural lobe of pituitary; NRGC, nucleus reticularis gigantocellularis; NRPG, nucleus reticularis paragigantocellularis;
NTS, nucleus tractus solitarius; OCX, occipital cortex; OT, optic tract; OTU, olfactory tubercle; PAG, periaqueductal gray; PAX, periamygdaloid cortex; PBN,
parabrachial nucleus; PC, posterior commissure; PIR, piriform cortex; PN, pons; POA, preoptic area; PP, perforant path; PV, periventricular nucleus of thalamus;
PVN(M), paraventricular nucleus (pars magnocellularis); PVN(P), paraventricular nucleus (pars parvocellularis); RD, nucleus raphe dorsalis; RE, nucleus reuniens
of thalamus; RF, reticular formation; RM, nucleus raphe magnus; RME, nucleus raphe medianus; SC, superior colliculus; SCP, superior cerebellar peduncle; SM,
stria medullaris thalami; SNC, substantia nigra (pars compacta); SNR, substantia nigra (pars reticulata); SNT, sensory nucleus of trigeminal (main); SON, supra-
optic nucleus; SPT, septal nuclei; STN, spinal nucleus of trigeminal; SUB, subiculum; VM, ventromedial nucleus of hypothalamus; VP, ventral pallidum; ZI, zona
incerta.
(B) Role of dynorphin in dependence.
accumbens, central nucleus of the amygdala, bed nucleus of the

stria terminalis, and hypothalamus (Fallon and Leslie, 1986). Dy-

norphins bind to all three opioid receptors but show a preference

for k receptors (Chavkin et al., 1982). Activation of the dynorphin/

k receptor system produces actions similar to other opioids but

often actions that are opposite to those of m opioid receptors in

the motivational domain, in which dynorphins produce aversive

dysphoric-like effects in animals and humans (Shippenberg

et al., 2007).

Dynorphin has long been hypothesized to mediate negative

emotional states. k receptor agonists produce place aversions

(Shippenberg et al., 2007) and depression and dysphoria in hu-

mans (Pfeiffer et al., 1986). The activation of dynorphin systems

in the nucleus accumbens has long been associated with activa-

tion of the dopamine systems by cocaine and amphetamine.

Activation of dopamine D1 receptors stimulates a cascade of

events that ultimately leads to cAMP response-element binding

protein (CREB) phosphorylation and subsequent alterations in

gene expression, notably the activation of expression of prota-
chykinin and prodynorphin mRNA. The subsequent activation

of dynorphin systems could contribute to the dysphoric syn-

drome associated with cocaine dependence and also feedback

to decrease dopamine release (Nestler, 2005). Activation of

dynorphin systems also may mediate a dysphoric component

of stress (Land et al., 2008; McLaughlin et al., 2003).

The evidence for a role of the dynorphin/k opioid system in the

neuroadaptive actions of other drugs of abuse is based both on

biochemical and antagonist studies. Substantial evidence sug-

gests that dynorphin peptide and gene expression are activated

in the striatum, ventral striatum, and amygdala during acute and

chronic administration of cocaine and alcohol (Spangler et al.,

1993; Daunais et al., 1993; Lindholm et al., 2000). Chronic binge

patterns of cocaine administration increase m and k opioid

receptor density in the nucleus accumbens, cingulate cortex,

and basolateral amygdala (Unterwald et al., 1994).

A highly selective k agonist, when administered chronically via

minipump, potentiated the alcohol deprivation effect in rats with

long-term ethanol experience, but acute injection of a k
Neuron 59, July 10, 2008 ª2008 Elsevier Inc. 19
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antagonist had no effect, suggesting the possibility that ethanol

drinking may be an attempt to overcome the aversive effects of k

agonists (Holter et al., 2000). Direct support for the hypothesis

that dynorphin is part of the negative emotional systems re-

cruited in dependence is the observation that nor-binaltorphi-

mine, when injected intracerebroventricularly or systemically,

blocked ethanol self-administration in dependent but not in non-

dependent animals (Walker and Koob, 2008; B.M. Walker and

G.F.K., unpublished data). k knockout mice also drank less eth-

anol in a two-bottle choice test using escalating doses of ethanol

(Kovacs et al., 2005).

Opiate withdrawal has been shown to increase dynorphin

levels in the amygdala (Rattan et al., 1992) and nucleus accum-

bens (Turchan et al., 1997). Animals with a history of heroin self-

administration showed increased levels of dynorphin A and -B in

the striatum at a time point just before the next scheduled self-

administration session (Cappendijk et al., 1999). Intracerebro-

ventricular dynorphin A treatment decreased heroin-stimulated

dopamine release and significantly increased heroin self-admin-

istration in daily 5 hr sessions, whereas a k antagonist had the

opposite effects (Xi et al., 1998).

Stress increases dynorphin activity, suggesting a potential in-

teraction with CRF systems. Blockade of dynorphin activity, ei-

ther via k receptor antagonism or prodynorphin gene disruption,

blocked stress-induced reinstatement of cocaine-induced place

preference in mice (McLaughlin et al., 2003) and blocked stress-

induced reinstatement of cocaine-seeking behavior (Beardsley

et al., 2005). Forced swim stress and inescapable footshock pro-

duced place aversions in mice that were blocked by a k antago-

nist and dynorphin knockout, and here, CRF was hypothesized

to produce its aversive effect via a CRF2 receptor-dynorphin

interaction (Land et al., 2008). Evidence also exists showing

Figure 6. Localizations and Projections of
Brain Stress Systems—Orexin (Hypocretin)
(A) Dots indicate the relative location of orexin-im-
munoreactive neurons, with arrows pointing to-
ward some of the more prominent terminal fields.
Modified with permission from Nambu et al.
(1999). AP, area postrema; cc, cerebral cortex;
CeG, central gray; Flo, flocculus; Hip, hippocam-
pus; Hypo, hypothalamus; IC, inferior colliculus;
LC; locus coeruleus; MB, midbrain; MO, medulla
oblongata; OB, olfactory bulb; PN, parabrachial
nucleus; SC, superior colliculus; Sept, septum;
SFO, subfornical organ.
(B) Role of orexin in dependence.

that reinstatement of drug-seeking be-

havior via activation of k opioid receptors

is mediated by CRF, and k agonist-in-

duced reinstatement of cocaine seeking

was blocked by a CRF1 antagonist (Val-

dez et al., 2007). Thus, the dynorphin/k

system mimics stressor administration

in animals in producing aversive effects

and inducing drug-seeking behavior,

and this aversive response may involve

reciprocal interactions with nucleus

accumbens dopamine and the brain extrahypothalamic CRF

system.

2.4. Orexin

Orexin (also known as hypocretin)-containing neurons derive

exclusively from the lateral hypothalamus and project widely

throughout the brain (Peyron et al., 1998), with a dense innerva-

tion of anatomical sites involved in regulating arousal, motiva-

tion, and stress states (Baldo et al., 2003) (Figure 6) (see Supple-

mental Data). Orexin A and orexin B have actions that are

mediated by two G protein-coupled receptors, OX1 and OX2

(also referred to as hypocretin 1 and -2, respectively, but orexin

A, orexin B, OX1, and OX2 are the accepted International Union of

Pharmacology nomenclature). OX1 has higher affinity for orexin

A, and OX2 has equal affinity for both orexin A and -B (Sakurai

et al., 1998). The orexin neuropeptides orexin A and orexin B in-

teract with noradrenergic, cholinergic, serotonergic, histaminer-

gic, and dopaminergic systems, in addition to the HPA axis, to

mediate sleep-wake regulation, energy homeostasis, and moti-

vational, neuroendocrine, and cardiovascular functions (Sutcliffe

and de Lecea, 2002).

A role for the orexin systems in the neuroadaptive processes

linked to dependence have been hypothesized based on a brain

arousal-stress function. Orexin neurons have been implicated in

drug seeking. Orexin neurons in the lateral hypothalamus are ac-

tivated by cues associated with rewards, such as food or drugs,

and exogenous stimulation of lateral hypothalamic orexin neu-

rons reinstates extinguished drug-seeking behavior in rodents

(Harris et al., 2005). Injection of an OX1 antagonist decreased

the place preference produced by morphine (Narita et al., 2006).

Using an intravenous cocaine self-administration model, ad-

ministration of orexin A reinstated previously extinguished co-

caine-seeking behavior, but rather than potentiating reward,
20 Neuron 59, July 10, 2008 ª2008 Elsevier Inc.
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orexin A induced a long-lasting brain reward deficit (Boutrel

et al., 2005). The reinstatement of cocaine-seeking behavior by

orexin also was blocked by noradrenergic or CRF receptor an-

tagonists. Antagonism of OX1 receptors prevented footshock-in-

duced reinstatement of cocaine-seeking behavior in rats (Boutrel

et al., 2005). Additionally, footshock stress elicited a selective ef-

fect on activation of orexin neurons in the perifornical-dorsome-

dial hypothalamus, leading to the hypothesis that orexin neurons

in the lateral hypothalamus mediate reward activation/arousal,

whereas orexin neurons in the perifornical-dorsomedial hypo-

thalamus mediate stress activation/arousal/memory (Harris

and Aston-Jones, 2006). Orexin A, possibly from the periforni-

cal-dorsomedial hypothalamus, activates CRF-expressing neu-

rons in the paraventricular nucleus of the hypothalamus and

the central nucleus of the amygdala (Sakamoto et al., 2004).

CRF neurons innervate orexin neurons, possibly from the ex-

tended amygdala (Winsky-Sommerer et al., 2004), suggesting

a novel reciprocal stress-activation system. Overall, these

results suggest a dynamic relationship between orexin and

reward/stress pathways in regulating the reinstatement of previ-

ously extinguished drug-seeking behaviors. Studies on the role

of specific orexin peptide receptors and specific brain sites on

the motivational aspects of drug dependence remain to be

explored.

2.5. Vasopressin

The neurohypophysial peptide vasopressin has actions in the

central nervous system in addition to its classic role as an anti-

diuretic hormone derived from the posterior pituitary (see Sup-

plemental Data). Vasopressin is widely distributed in the brain

outside of the hypothalamus, and the highest vasopressin con-

centrations are in the suprachiasmatic and supraoptic nuclei,

but substantial levels also have been observed in the septum

Figure 7. Localizations and Projections of
Brain Stress Systems—Vasopressin
Schematic of the most prominent vasopressin-
immunoreactive projections. Modified with per-
mission from de Vries and Miller (1998). AMB,
ambiguus nucleus; BST, bed nucleus of the
stria terminalis; CG, midbrain central gray; DM,
dorsomedial nucleus of the hypothalamus; DR,
dorsal raphe nucleus; DVC, dorsal vagal com-
plex; Hip, ventral hippocampus; LC, locus co-
eruleus; LH; lateral habenular nucleus; LS; lat-
eral septum; MA, medial nucleus of the
amygdala; MP; medial preoptic area; OT, olfac-
tory tubercle; ovlt; organum vasculosum laminae
terminalis; PB, parabrachial nucleus; PV, peri-
ventricular nucleus of the hypothalamus; PVN,
paraventricular nucleus; SCN, suprachiasmatic
nucleus; SON, supraoptic nucleus; VSA, ventral
septal area.
(B) Role of vasopressin in dependence.

and locus coeruleus (Figure 7). Vaso-

pressin neurons innervating the ex-

tended amygdala are hypothesized to

derive from cell bodies in the medial

bed nucleus of the stria terminalis (de

Vries and Miller, 1998). Vasopressin

binds to three different G protein-cou-

pled receptor subtypes: V1a, V1b, and V2. The V2 receptor is ex-

pressed almost exclusively in the kidney, where it mediates the

antidiuretic action of vasopressin. The V1a and V1b receptors are

localized to the brain, and the distribution of vasopressin

receptor binding is prominent in the rat extended amygdala,

with high concentrations in the lateral and supracapsular bed

nucleus of the stria terminalis, the central nucleus of the amyg-

dala, and the shell of the nucleus accumbens (Veinante and

Freund-Mercier, 1997).

Vasopressin mRNA levels were increased selectively in the

amygdala during early spontaneous withdrawal from heroin,

and a selective V1b receptor antagonist, SSR149415, blocked

footshock-induced reinstatement of heroin-seeking behavior,

suggesting that vasopressin systems in the amygdala may be

a key component of the aversive emotional consequences of

opioid withdrawal (Zhou et al., 2008). Prolonged or chronic

ethanol exposure decreased vasopressin-like immunoreactivity

in the hypothalamus and the bed nucleus of the stria terminalis

projection to the lateral septum (Gulya et al., 1991). A selective

V1b receptor antagonist dose-dependently blocked the increase

in ethanol self-administration during withdrawal in dependent

rats but had no effect in nondependent animals (S. Edwards

et al., 2008, Soc. Neurosci., abstract). To date, few studies

have explored the motivational effects of vasopressin antago-

nists in animal models of dependence or stress-induced rein-

statement with other drugs of abuse. However, the literature

suggesting that V1b antagonists have anxiolytic-like profiles

(see Supplemental Data) and that vasopressin and its receptors

are highly expressed in the extended amygdala lends credence

to the hypothesis that vasopressin systems in the extended

amygdala may have a role in the increased alcohol intake asso-

ciated with dependence.
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3. Brain Antistress Systems and Addiction:
Neuropeptide Y and Nociceptin
3.1. Neuropeptide Y

Neuropeptide Y (NPY) is a 36 amino acid polypeptide with pow-

erful orexigenic and anxiolytic-like actions (see Supplemental

Data). NPY is distributed widely throughout the central nervous

system but with high concentrations in the extended amygdala

(Adrian et al., 1983) (Figure 8). Multiple NPY receptor subtypes

have been identified, with the Y1 and Y2 subtypes most impli-

cated in stress and drug actions. The Y1 receptor has a wide dis-

tribution throughout the rat brain, where it is most abundantly

found in the cortex, olfactory tubercle, hippocampus, hypothal-

amus, and thalamus (Parker and Herzog, 1999). The distribution

of Y2 receptors is similar to that of Y1 receptors, although Y2 re-

ceptor expression is less abundant in the cortex and thalamus

and more abundant in the hippocampus (Parker and Herzog,

1999). Y1 receptors are hypothesized to be postsynaptic and

Y2 receptors presynaptic (Heilig and Thorsell, 2002).

NPY administered intracerebroventricularly blocked ethanol

withdrawal (Woldbye et al., 2002). Subsequent studies using

animal models of dependence-induced drinking in rodents

showed that NPY administered intracerebroventricularly re-

duced limited-access alcohol intake in Wistar rats if they had

a history of alcohol dependence produced by chronic intermit-

tent exposure to alcohol vapor (Thorsell et al., 2005). Intracere-

broventricularly administered NPY also suppressed alcohol

intake in rats selectively bred for high alcohol preference but

did not alter alcohol intake in their low alcohol-preferring counter-

parts (Badia-Elder et al., 2001, 2003). The suppressive effects of

intracerebroventricularly administered NPY on ethanol drinking

in P rats is enhanced and prolonged following periods of imposed

alcohol abstinence (Gilpin et al., 2003). Intracerebroventricular

Figure 8. Localizations and Projections of
Brain Antistress Systems—Neuropeptide Y
(A) NPY pathways hypothesized to be involved in
NPY effects related to stress and emotionality.
Modified with permission from Heilig (2004).
ARC, arcuate nucleus; Hipp, hippocampus; LC,
locus coeruleus; LSdc, lateral septum-dorsocau-
dal; LSv, lateral septum-ventral; NAc, nucleus ac-
cumbens; PAG, periaqueductal gray matter.
(B) Role of NPY in dependence.

administration of NPY did not affect lim-

ited-access nondependent alcohol intake

by Wistar rats (Badia-Elder et al., 2001).

Given the evidence that the anti-anxi-

ety-like effects of NPY are mediated by

the central or basolateral amygdala com-

plex (Heilig et al., 1994), a logical site for

exploring the NPY-induced decrease in

excessive ethanol intake is the central

nucleus of the amygdala. Ethanol with-

drawal decreased NPY protein in the cen-

tral and medial nuclei of the amygdala

(Roy and Pandey, 2002). Infusion of a viral

vector encoding prepro-NPY directly into the central nucleus of

the amygdala reduced continuous-access alcohol drinking by

Long-Evans rats that exhibited anxiety-like behavior in the

elevated plus maze (Primeaux et al., 2006). In Wistar rats with

a history of dependence and multiple abstinence periods, viral

vector-induced amygdala NPY overexpression reduced anxi-

ety-like behavior and produced long-term suppression of alco-

hol drinking (Thorsell et al., 2007). In P rats with a long history

of alcohol consumption, infusions of NPY directly into the central

nucleus of the amygdala suppressed alcohol drinking only in P

rats that were subjected to periods of imposed alcohol absti-

nence (Gilpin et al., 2008). P rats have been shown to have lower

basal levels of NPY in the central nucleus of the amygdala and

correlationally higher anxiety-like behavior compared with alco-

hol-nonpreferring rats (Suzuki et al., 2004; Pandey et al., 2005).

Increases in NPY activity in the central nucleus of the amygdala,

produced via alterations in CREB function or direct administra-

tion of NPY, decreased ethanol intake and anxiety-like behavior

in P rats with a short history of self-administration (Pandey et al.

2005). Exogenous NPY administered into the central nucleus of

the amygdala also significantly decreased alcohol drinking by al-

cohol-dependent rats but not in nondependent controls (Gilpin

et al., 2008), confirming the results observed with viral vector-

induced induction of NPY activity (Thorsell et al., 2007).

Both Y1 and Y2 receptor subtypes are involved in the exces-

sive drinking associated with alcohol dependence. Y1 receptor

knockout mice show increased alcohol consumption (Thiele

et al., 2002). In contrast, Y2 receptor knockout mice drink signif-

icantly less alcohol (Thiele et al., 2004). Pharmacological studies

have confirmed that blockade of Y1 receptors increases ethanol

intake in C57BL/6 high-drinking mice (Sparta et al., 2004) and

blockade of Y2 receptors decreases ethanol intake in dependent
22 Neuron 59, July 10, 2008 ª2008 Elsevier Inc.
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animals (Rimondini et al., 2005) and in animals responding for

ethanol in a sweet solution (Thorsell et al., 2002). Y1 knockout

mice and Y1 antagonists show an anxiogenic-like profile, and

Y2 knockout mice and Y2 antagonists show an anxiolytic-like

profile, thus providing an important link between the NPY sys-

tem, anxiety-like responses, and alcohol intake in dependent

animals (Valdez and Koob, 2004). Combined with the extensive

work in dependent animals, these studies suggest that the

NPY system may change its impact on drinking during the

transition from nondependent to dependent drinking.

These studies suggest that both constitutive and alcohol-

induced changes in NPY activity in the amygdala may be involved

not only in mediating anxiety-like responses but also in the moti-

vational effects of ethanol dependence. One hypothesis is that

decreased activity of NPY, parallel to increased activity of CRF,

may provide a motivational basis for increased alcohol self-ad-

ministration during alcohol withdrawal or protracted abstinence

that drives excessive alcohol consumption (Heilig et al., 1994).

NPY has been implicated in dependence on other drugs of

abuse, but the extant literature is not as extensive. Chronic her-

oin treatment increased NPY neuron activity measured by immu-

nohistochemistry in the thalamic paraventricular nucleus and

bed nucleus of the stria terminalis (D’Este et al., 2006). NPY ad-

ministered intracerebroventricularly blocked the somatic signs

of withdrawal from morphine precipitated by the opioid antago-

nist naloxone, and these behavioral changes were accompanied

by decreases in c-fos expression in the locus coeruleus, lateral

septal nucleus, periaqueductal gray, cingulate and frontal corti-

ces, and septohippocampal nucleus (Clausen et al., 2001). NPY

and NPY peptide analogs administered intracerebroventricularly

decreased naloxone-precipitated withdrawal in rats (Woldbye

et al., 1998).

3.2. Nociceptin (Orphanin FQ)

Nociceptin is the endogenous ligand for the nociceptin/orphanin

FQ peptide (NOP) receptor (the accepted International Union

on Pharmacology nomenclature; the receptor also has been re-

ferred to as the orphan opioid receptor or opioid receptor-like-1,

or ORL-1 receptor) (Mollereau et al., 1994). Nociceptin is a 17

amino acid polypeptide structurally related to the opioid peptide

dynorphin A (Reinscheid et al., 1995; Meunier et al., 1995). Noci-

ceptin does not bind to m, d, or k receptors, and no known opi-

oids bind to the NOP receptor. Brain mapping studies have

shown that the neuroanatomical distribution of nociceptin and

its receptor are distinct from those of other opioid peptides

and probably represent local short projection circuits (Neal

et al., 1999) (Figure 9). The highest density of nociceptin and

its receptor can be found in the cortex, amygdala, bed nucleus

of the stria terminalis, medial prefrontal cortex, ventral tegmental

area, lateral hypothalamus, nucleus accumbens, and many

brainstem areas, including the locus coeruleus and raphe

(Darland et al., 1998; Neal et al., 1999).

NOP receptor agonists, antagonists, and knockouts have nu-

merous functional effects, including blocking stress-induced

analgesia, anxiolytic-like effects, and drug reward (see Supple-

mental Data). Consistent with the role of nociceptin in stress-

related responses, the nociceptin system also may modulate

dependence via actions on brain emotional systems involved

in the brain stress responses. Intracerebroventricular treatment
with nociceptin (Ciccocioppo et al., 1999, 2004) or peptidic

NOP receptor agonists (Economidou et al., 2006) significantly

decreased ethanol consumption in msP rats. These effects

were blocked by a nociceptin antagonist (Ciccocioppo et al.,

2003). However, NOP knockout mice backcrossed onto

a C57BL/6 background also showed decreases in ethanol con-

sumption in a two-bottle choice test (Sakoori and Murphy,

2008), and certain regimens of NOP receptor agonist administra-

tion increased ethanol intake (Economidou et al., 2006).

Nociceptin significantly reduced stress-induced reinstate-

ment of ethanol- (but not cocaine-) seeking behavior in Wistar

rats (Martin-Fardon et al., 2000) and cue-induced reinstatement

in msP rats (Ciccocioppo et al., 2003). In addition, activation of

the NOP receptor inhibited drug-induced reinstatement of etha-

nol- and morphine-induced conditioned place preference in

mice (Kuzmin et al., 2003; Shoblock et al., 2005) and prevented

relapse-like behavior in the alcohol deprivation model in msP

rats (Kuzmin et al., 2007).

Thus, activation of the nociceptin system decreased the acute

rewarding effects of drugs of abuse measured by place prefer-

ence, produced antistress effects, blocked ethanol consumption

in a genetically selected line known to be hypersensitive to

stressors, and decreased reinstatement of drug-seeking behav-

ior. Investigating the role of nociceptin in dependence-induced

drinking and the localization of its site of action for its effects

on drinking remains for future work.

4. Cellular Mechanisms of the Brain Stress Systems
in the Extended Amygdala
Elements of the brain stress and antistress systems can be hy-

pothesized to act in series or in parallel on common mechanisms

in the extended amygdala to affect emotional states. Cellular

studies using electrophysiological techniques have the power

to elucidate the common mechanisms. To date, most studies

have explored either g-aminobutyric acid (GABA) or glutamater-

gic activity within the extended amygdala, and some parallels

can be found at the cellular level that appear at the behavioral-

neuropharmacological level of analysis.

In the amygdala, CRF is localized within a subpopulation of

GABAergic neurons in the bed nucleus of the stria terminalis

and central nucleus of the amygdala that are different from those

that colocalized with enkephalin (Day et al., 1999). In brain slice

preparations, CRF enhanced GABAA inhibitory postsynaptic

potentials (IPSCs) in whole-cell recordings of the central nucleus

of the amygdala, and this effect was blocked by CRF1 antago-

nists and in CRF1 knockout mice (Nie et al., 2004). Nociceptin

had the opposite effects in the central nucleus of the amyg-

dala—decreasing GABAergic IPSCs (Roberto and Siggins,

2006). Vasopressin also activated cells in the medial part of the

central nucleus of the amygdala (Huber et al., 2005). These

results show that CRF and vasopressin, which are anxiogenic-

like, activate GABAergic interneurons in the central nucleus of

the amygdala.

Most neurons in the central nucleus of the amygdala are

GABAergic, either inhibitory interneurons with recurrent or

feed-forward connections or inhibitory projection neurons to

brainstem or downstream regions (e.g., bed nucleus of the stria

terminalis). The central nucleus of the amygdala can be identified
Neuron 59, July 10, 2008 ª2008 Elsevier Inc. 23
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Figure 9. Localizations and Projections
of Brain Antistress Systems—Nociceptin/
Orphanin FQ
(A) Schematic representation of the distribution of
nociceptin peptide in the rat central nervous sys-
tem determined by immunohistochemistry and in
situ hybridization. Neuronal perikarya are shown
as solid circles, and fibers-terminals as short
curved lines and dots. Data from Neal et al.
(1999); very similar results were reported by Anton
et al. (1996). AA, anterior amygdala; ABL, basolat-
eral nucleus of amygdala; AC, anterior commis-
sure; ACB, nucleus accumbens; ACE, central nu-
cleus of the amygdala; ACO, cortical nucleus of
amygdala; AD, anterodorsal nucleus of thalamus;
AL, anterior lobe of pituitary; AM, anteromedial nu-
cleus of thalamus; AMB, nucleus ambiguus; AME,
medial nucleus of the amygdala; AON, anterior ol-
factory nucleus; ARC, arcuate nucleus; AV, ante-
roventral nucleus of thalamus; BST, bed nucleus
of the stria terminalis; CC, corpus callosum;
CGX, cingulate cortex; CM, central-medial nu-
cleus of thalamus; COCH, cochlear nuclear com-
plex; CPU, caudate-putamen; CST, corticospinal
tract; DH, dorsal horn of spinal cord; DG, dentate
gyrus; DM, dorsomedial nucleus of hypothalamus;
DNV, dorsal motor nucleus of vagus; DTN, dorsal
tegmental nucleus; ENT, entorhinal cortex; FN,
fastigial nucleus of cerebellum; FRX, frontal cor-
tex; GL, glomerular layer of olfactory bulb; GP,
globus pallidus; HM, medial habenular nucleus;
HPC, hippocampus; IC, inferior colliculus; IL, inter-
mediate lobe of pituitary; IP, interpeduncular nu-
clear complex; LC, nucleus locus coeruleus; LG,

lateral geniculate nucleus; LHA, lateral hypothalamic area; LRN, lateral reticular nucleus; MF, mossy fibers of hippocampus; MFN, motor facial nucleus; MG, me-
dial geniculate nucleus; ML, medial lemniscus; MM, medial mammillary nucleus; MNT, mesencephalic nucleus of trigeminal; MVN, medial vestibular nucleus;
NCU, nucleus cuneatus; NCX, neocortex; NDB, nucleus of diagonal band; NL, neural lobe of pituitary; NRGC, nucleus reticularis gigantocellularis; NRPG, nucleus
reticularis paragigantocellularis; NTS, nucleus tractus solitarius; OCX, occipital cortex; OT, optic tract; OTU, olfactory tubercle; PAG, periaqueductal gray; PAX,
periamygdaloid cortex; PBN, parabrachial nucleus; PC, posterior commissure; PIR, piriform cortex; PN, pons; POA, preoptic area; PP, perforant path; PV, peri-
ventricular nucleus of thalamus; PVN(M), paraventricular nucleus (pars magnocellularis); PVN(P), paraventricular nucleus (pars parvocellularis); RD, nucleus raphe
dorsalis; RE, nucleus reuniens of thalamus; RF, reticular formation; RM, nucleus raphe magnus; RME, nucleus raphe medianus; SC, superior colliculus; SCP,
superior cerebellar peduncle; SM, stria medullaris thalami; SNC, substantia nigra (pars compacta); SNR, substantia nigra (pars reticulata); SNT, sensory nucleus
of trigeminal (main); SON, supraoptic nucleus; SPT, septal nuclei; STN, spinal nucleus of trigeminal; SUB, subiculum; VM, ventromedial nucleus of hypothalamus;
VP, ventral pallidum; ZI, zona incerta.
(B) Role of nociceptin in dependence.
as a ‘‘gate’’ that regulates the flow of information through the

intra-amygdaloidal circuits, and the fine-tuning of the GABAergic

inhibitory system in the central nucleus of the amygdala may be

a prerequisite for controlling both local and output neurons to

downstream nuclei. Because GABAergic drugs are typically ro-

bust anxiolytics, the fact that anxiogenic-like neurotransmitters

would activate GABAergic neurotransmission and anxiolytic-

like neurotransmitters would depress GABAergic transmission

in a brain region known to be involved in stress-related behavior

may seem paradoxical. However, local GABAergic activity within

the central nucleus of the amygdala may functionally influence

neuronal responsivity of inhibitory central nucleus of the amyg-

dala gating that regulates information flow through the local in-

tra-amygdaloidal circuits (i.e., by disinhibiting the central nucleus

of the amygdala), leading to increased inhibition in downstream

regions that mediate the behavioral response.

In the bed nucleus of the stria terminalis, whole-cell recordings

from slice preparations demonstrated that CRF enhanced

GABAergic neurotransmission, and the CRF effect appeared to

be via the CRF1 receptor similar to the effects in the amygdala,

and NPY inhibited GABAergic neurotransmission (Kash and

Winder, 2006). The predominant noradrenergic innervation of
24 Neuron 59, July 10, 2008 ª2008 Elsevier Inc.
the bed nucleus of the stria terminalis is in the ventral part, and

here norepinephrine decreases glutamatergic activity measured

both electrophysiologically and with in vivo microdialysis (Egli

et al., 2005; Forray et al., 1999). Norepinephrine also increased

GABAA IPSCs (Dumont and Williams, 2004). Thus, if one com-

bines the data from the central nucleus of the amygdala and

the bed nucleus of the stria terminalis, then certain consistencies

evolve (Table 3). CRF, vasopressin, and norepinephrine increase

GABAergic activity, and NPY and nociceptin decrease GABAer-

gic activity, actions at the cellular level that are parallel to the be-

havioral effects described above with neuropharmacological

studies (Table 3).

Other researchers have argued that increasing excitability in

the basolateral nucleus of the amygdala contributes to the anx-

iogenic-like effects of CRF (Rainnie et al., 2004). Using whole-cell

patch-clamp recordings from basolateral amygdala neurons of

animals chronically administered a CRF1/CRF2 agonist, urocor-

tin, showed an N-methyl-D-aspartate (NMDA) receptor-medi-

ated decrease in both spontaneous and stimulation-evoked

IPSPs (Rainnie et al., 2004). Ethanol withdrawal, diazepam with-

drawal, and uncontrollable stress also suppress IPSCs of the

cells in the basolateral amygdala using a whole-cell patch-clamp
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preparation (Isoardi et al., 2007). These NMDA-mediated effects

are the opposite of the GABA-mediated effects observed in the

central nucleus of the amygdala and suggest that an integration

of the role of the central and basolateral nuclei of the amygdala in

stress and dependence responses will be required.

With the exception of recent studies with ethanol dependence,

little work has been done at the cellular level in the extended

amygdala on the changes in neurotransmission in the brain

stress systems with the development of dependence. Chronic

ethanol-induced changes in neuronal activity of GABA interneu-

rons in the central nucleus of the amygdala have been linked to

actions of CRF and nociceptin. Acute administration of doses

of alcohol in the intoxicating range increased GABAA receptor-

mediated IPSCs in central nucleus of the amygdala neurons,

and this effect has been hypothesized to be attributable to an in-

crease in presynaptic GABA release (Roberto et al., 2003; Nie

et al., 2004). Even more striking is that the augmented GABA re-

lease is increased even further in dependent animals, shown

both by electrophysiological and in vivo microdialysis measures

(Roberto et al., 2004). The ethanol-induced enhancement of

GABAergic IPSCs was blocked by CRF1 antagonists (Nie et al.,

2004; Roberto et al., 2004) and was not observed in CRF1 knock-

out mice (Nie et al., 2004). Nociceptin-induced inhibition of

IPSCs was increased in dependent animals, suggesting an in-

creased sensitivity to nociceptin (Roberto and Siggins, 2006).

Thus, not only do the brain stress/antistress systems interact

systematically with the hypothesized GABAergic interneurons

of the central nucleus of the amygdala, but ethanol dependence

also sensitizes these neurons to the actions of the brain stress/

antistress systems.

5. Neurocircuitry of the Brain Stress Systems
in Dependence
Five potential arousal-stress neurotransmitter systems (CRF,

norepinephrine, vasopressin, orexin, dynorphin) and two poten-

tial antistress neurotransmitter systems (NPY, nociceptin) have

been explored in the present review from the perspective of

a role in the neuroadaptation associated with the development

of negative emotional states associated with drug dependence

and addiction. The most compelling data are in the domain of

CRF, where, for virtually all major drugs of abuse, (1) CRF is re-

leased during acute withdrawal, (2) CRF antagonists block the

anxiogenic-like effects of acute withdrawal, (3) CRF antagonists

Table 3. Effects of Brain Stress Neurotransmitters on GABAergic

Activity in the Extended Amygdala

Central Nucleus

of the Amygdala

Bed Nucleus of the

Stria Terminalis

Stress Neurotransmitters

Corticotropin-releasing factor [ [

Norepinephrine — [

Vasopressin [ —

Antistress Neurotransmitters

Neuropeptide Y — Y

Nociceptin Y —

—, not determined.
block the excessive drug intake associated with dependence,

and (4) CRF antagonists block stress-induced reinstatement.

The focal point for most of these effects is the central nucleus

of the amygdala and the bed nucleus of the stria terminalis

(see Figure 1).

Although less extensive, similar data exist for some noradren-

ergic antagonists that block the anxiogenic-like effects of opiate

withdrawal, block excessive drug intake associated with depen-

dence on ethanol, cocaine, and opioids, and block stress-

induced reinstatement to cocaine, opioids, ethanol, and nicotine

(see Figure 4). Again, the focal point for many of these effects is

the central nucleus of the amygdala and the bed nucleus of the

stria terminalis.

Much evidence has been marshaled to show that dynorphin is

increased in the nucleus accumbens in response to dopaminer-

gic activation and, in turn, that overactivity of the dynorphin sys-

tems can decrease dopaminergic function. k antagonists have

been shown to block the aversive effects of drug withdrawal

and the excessive drinking associated with ethanol dependence

and stress-induced reinstatement of drug seeking (see Figure 5).

Evidence suggests that k receptor activation can produce CRF

release (Song and Takemori, 1992), but recently some have ar-

gued that the effects of dynorphin in producing negative emo-

tional states are mediated via activation of CRF systems (Land

et al., 2008).

Much less evidence to date has demonstrated a direct role for

vasopressin and orexin in the negative emotional states associ-

ated with drug dependence (see Figures 6 and 7). A vasopressin

antagonist blocked stress-induced reinstatement of heroin-

seeking behavior and withdrawal-induced ethanol drinking,

and an orexin antagonist blocked stress-induced reinstatement

of cocaine seeking. Much more work will be required to explore

the role of these systems and their interactions with other major

players, such as CRF.

Significant evidence suggests that activation of NPY in the

central nucleus of the amygdala can block the motivational as-

pects of dependence associated with chronic ethanol adminis-

tration. NPY administered intracerebroventricularly blocked the

anxiogenic-like effects of withdrawal from ethanol and blocked

the increased drug intake associated with ethanol dependence

(see Figure 8). Direct administration or viral vector-enhanced

expression of NPY into the central nucleus of the amygdala

also blocked the increased drug intake associated with ethanol

dependence. Few or no studies have examined the effects of

NPY on motivational aspects of dependence with other drugs

of abuse.

The role for nociceptin in dependence suggests interactions

both with the rewarding effects of drugs of abuse and in the mo-

tivational aspects of dependence, mainly with ethanol. Nocicep-

tin blocks the rewarding effects of most major drugs of abuse

measured by place preference (see Supplemental Data). Noci-

ceptin decreased ethanol self-administration in msP rats known

to have a constitutive increase in CRF activity and a stress-like

phenotype. msP rats are known to have a high basal stress re-

sponse, to show decreased ethanol intake similar to dependent

rats with administration of a CRF1 antagonist, and to carry a ge-

netic polymorphism of the CRF1 promoter, resulting in increased

CRF1 density in several brain regions (Hansson et al., 2006) (see
Neuron 59, July 10, 2008 ª2008 Elsevier Inc. 25



Neuron

Review
Figure 10. The Extended Amygdala and Its
Afferent and Major Efferent Connections
and Modulation via Brain Arousal-Stress
Systems
Horizontal section through a rat brain depicting the
extended amygdala and its afferent and major ef-
ferent connections and modulation via brain
arousal-stress systems. (Top) Central division of
the extended amygdala with the central nucleus
of the amygdala and lateral bed nucleus of the stria
terminalis and a transition area in the shell of the
nucleus accumbens highlighted. (Bottom) En-
largement of the hypothesized interaction of the
brain stress systems and the extended amygdala.
Note that dynorphin may activate CRF neurons or
be activated by CRF neurons, that norepinephrine
and CRF are hypothesized to be involved in
a feed-forward circuit, and that vasopressin for
the central nucleus of the amygdala is hypothe-
sized to derive from the bed nucleus of the stria
terminalis. NPY and nociceptin are not depicted
in this figure but may act either via modulation of
the CRF system or independently, directly on the
output of the central nucleus of the amygdala (to
be determined).
Figure 9). Nociceptin also significantly reduced stress-induced

reinstatement of ethanol. Future studies should explore the

role of both of these antistress systems (NPY, nociceptin) in

the negative emotional responses associated with dependence

on other drugs of abuse.

A pronounced interaction exists between central nervous

system CRF and norepinephrine systems. Conceptualized as

a feed-forward system at multiple levels of the pons and basal

forebrain, CRF activates norepinephrine, and norepinephrine in

turn activates CRF (Koob, 1999; see Supplemental Data).

The common neurocircuitry actions of drugs of abuse on the

brain stress systems and the change in plasticity of these circuits

(see above) may involve molecular neuroadaptations that either

differentially drive the circuits or result from the changes in activ-

ity of the circuits or both. Repeated perturbation of intracellular

signal transduction pathways may cause changes in neuronal

function and/or changes in nuclear function and altered rates

of transcription of particular target genes. Altered expression

of such genes would lead to presumably long-term altered activ-

ity of the neurons where such changes occur and ultimately to

changes in neural circuits in which those neurons operate.

Much work in addiction has shown that chronic exposure to

opiods and cocaine leads to activation of CREB in the nucleus

accumbens and central nucleus of the amygdala (Shaw-Lutch-

man et al., 2002; Edwards et al., 2007). Although acute adminis-

tration of drugs of abuse can cause a rapid (within hours) activa-

tion of members of the Fos protein family, such as FosB, Fra-1,

and Fra-2 in the nucleus accumbens, other transcription factors,

isoforms of DFosB, have been shown to accumulate over longer

periods of time (days) with repeated drug administration (Nestler,

2005). Animals with activated DFosB have exaggerated sensitiv-

ity to the rewarding effects of drugs of abuse, and DFosB may be

a sustained molecular ‘‘switch’’ that helps to initiate and maintain
26 Neuron 59, July 10, 2008 ª2008 Elsevier Inc.
a state of addiction (McClung et al., 2004). Whether (and how)

such transcription factors influence the function of the brain

stress systems, such as CRF and those described above,

remains to be determined.

A focus of this review has been on the connections of the brain

arousal-stress systems with the extended amygdala, particularly

the central nucleus of the amygdala and the bed nucleus of the

stria terminalis. Three of the seven systems (norepinephrine,

orexin, NPY) are widely distributed in the brain but with a heavy

innervation of the extended amygdala. Four of the systems (CRF,

vasopressin, nociceptin, dynorphin) are more localized to local

circuits throughout the forebrain but also with a heavy innerva-

tion of the extended amygdala (Figure 10). However, the conver-

gence of these neurotransmitter systems in the region of the

extended amygdala suggests key roles in the processing of

emotional stimuli potentially triggered by neurons deriving from

the brainstem (norepinephrine), hypothalamus (nociceptin,

NPY), and within the extended amygdala itself (CRF, vasopres-

sin, nociceptin, dynorphin). The extended amygdala receives af-

ferents from the prefrontal cortex and insula and sends efferents

to the lateral hypothalamus, ventral tegmental area, and pedun-

culopontine nucleus (Figure 10). Which parts of this neurocircui-

try play a key role in the negative emotional states of drug depen-

dence and how they interact with the brain stress systems

remain to be elucidated. What is known is that most of the cells

in the lateral division of the central nucleus of the amygdala and

bed nucleus of the stria terminalis (extended amygdala) are

GABAergic and that a distinct subpopulation colocalizes with

either enkephalin or CRF, but they virtually never colocalize to-

gether on the same GABAergic cell (Day et al., 1999). Only en-

kephalin, and not CRF, colabeled neurons were activated by in-

terleukin-1b, suggesting that discrete neural circuits exist within

the extended amygdala (Day et al., 1999). Additionally, the
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electrophysiological anatomical studies outlined above suggest

that these GABAergic neurons in the central nucleus of the

amygdala respond to arousal-stress neurotransmitters with in-

creased firing and respond to antistress neurotransmitters with

decreased firing. These GABAergic neurons that are intrinsic to

the central nucleus of the amygdala may be interneurons that

inhibit another GABAergic link in the efferent pathway (Day

et al., 1999; Davis et al., 1994).

The hypothesis that the central nucleus of the amygdala forms

a focal point for a convergence of emotional stimuli to produce

emotional responses has long been formulated for conditioned

fear and pain. A cortex/lateral amygdala/central nucleus of

the amygdala circuit has been shown to be critical for the expres-

sion of fear conditioning (Phelps and Le Doux, 2005). A condi-

tioned acoustic stimulus activated the lateral nucleus of the lat-

eral amygdala via auditory processing areas in the medial

division of the medial geniculate body and auditory association

cortex. The lateral amygdala, in turn, projects to the central

amygdala, which controls the expression of fear responses

through projections to the brainstem (Phelps and Le Doux,

2005).

Substantial evidence implicates the amygdala in both pain

modulation and emotional responses to pain. In addition to

receiving well-processed affective and cognitive inputs, pain-

related information is conveyed to the lateral, basolateral, and

central nuclei of the amygdala via both the spinothalamic and

spinohypothalamic pain pathways but also via projections from

the spino-parabrachial-amygdaloid pain pathway (spinal cord

and trigeminal nucleus to the parabrachial nucleus and then to

the central nucleus of the amygdala) (Bernard and Besson,

1990). Both of these pathways have been implicated in mediat-

ing the affective dimension of pain (Neugebauer et al., 2004).

Numerous parallels may exist in amygdala mediation of the emo-

tional dysregulation of addiction outlined above and the emo-

tional component of pain mediated by the amygdala. These

parallels include interactions between stress, depression, and

pain (Neugebauer et al., 2004), the relationship between toler-

ance and sensitization to pain (Celerier et al., 2001), and the

glucocorticoid modulation of pain (Greenwood-Van Meerveld

et al., 2001). How the brain stress neurotransmitters outlined

above play a role in both processes is a challenge for future

research.

6. Hedonic Homeostatic Dysregulation as a Conceptual
Framework for Linking Stress Systems and Addiction
6.1. Hypothalamic-Pituitary-Adrenal Axis as a Facilitator

As noted above, all drugs of abuse engage the HPA axis during

acquisition of drug taking and again during acute withdrawal

from the drug, and both CRF and vasopressin in the paraventric-

ular nucleus of the hypothalamus control these responses. How-

ever, as the cycle of drug taking and withdrawal continues, the

HPA axis response shows tolerance, but the repeated exposure

of the brain to high levels of glucorticoids can continue to have

profound effects on the extrahypothalamic brain stress systems.

Strong evidence suggests that glucocorticoids ‘‘sensitize’’ the

CRF system in the amygdala (Imaki et al., 1991; Makino et al.,

1994; Swanson and Simmons, 1989). Thus, engagement of the

brain stress systems may contribute to the negative emotional
state that dissipates with time following a single injection of

a drug, but with repeated administration of drug grows larger

with time (or fails to return to normal homeostatic baseline), in

contrast to the HPA axis, setting up a negative reinforcement

mechanism (see also ‘‘Allostasis and Addiction’’ section below).

Thus, the HPA axis and glucocorticoids are linked to high re-

sponsivity to novelty and facilitation of reward in initial drug

use and also may be involved in potentiating adaptations

in many parts of the neuraxis, particularly in extended amygdala

systems where they contribute to the shift from homeostasis

to pathophysiology associated with drug abuse. These results

suggest that activation of the HPA component of stress can

play an important role in facilitating both reward and brain

stress neurochemical systems implicated in the development

of addiction.

6.2. Opponent Process/Between-System

Neuroadaptations

As defined above, opponent process, between-system neuroa-

daptations (Table 1) are hypothesized to involve activation of the

neurotransmitter systems grouped together in this review as the

brain arousal-stress systems. Thus, recruitment of the CRF sys-

tem occurs during the development of dependence for all drugs

of abuse that has motivational significance (Figure 1B above),

but additional between-system neuroadaptations associated

with motivational withdrawal include activation of the dynor-

phin/k opioid system, norepinephrine brain stress system, extra-

hypothalamic vasopressin system, and possibly the orexin sys-

tem. Additionally, activation of the brain stress systems may

not only contribute to the negative motivational state associated

with acute abstinence but also may contribute to the vulnerability

to stressors observed during protracted abstinence in humans.

However, brain antistress systems, such as NPY and nociceptin,

also may be compromised during the development of depen-

dence, thus removing a mechanism for restoring homeostasis

(Koob and Le Moal, 2008). These results suggest that the moti-

vation to continue drug use during dependence not only includes

a change in the function of neurotransmitters associated with the

acute reinforcing effects of drugs of abuse during the develop-

ment of dependence, such as dopamine, opioid peptides, sero-

tonin, and GABA, but also recruitment of the brain stress

systems and/or disruption of the brain antistress systems

(Koob and Le Moal, 2005).

The neuroanatomical entity integrating these brain arousal-

stress and antistress systems may be the extended amygdala.

Thus, the extended amygdala may represent a neuroanatomical

substrate for the negative effects on reward function produced by

stress that help drive compulsive drug administration (Koob and

Le Moal, 2008) (Figure 10). The extended amygdala has a role in

integrating emotional states such as the expression of the condi-

tioned fear response in the central nucleus of the amygdala

(Phelps and Le Doux, 2005) and emotional pain processing

(Neugebauer et al., 2004) (see above). The integration of data

from addiction neurobiology and from behavioral neuroscience

of fear and pain point to a rich substrate for the integration of emo-

tional stimuli related to the arousal-stress continuum (Pfaff, 2006)

and provides insights not only into the mechanisms of emotional

dysregulation in addiction but also into the mechanisms of

emotions themselves.
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The development of the aversive emotional state that drives

the negative reinforcement of addiction is hypothesized to in-

volve a long-term, persistent plasticity in the activity of neural

circuits mediating motivational systems that derive from recruit-

ment of antireward systems that drive aversive states. The with-

drawal/negative affect stage defined above consists of key mo-

tivational elements, such as chronic irritability, emotional pain,

malaise, dysphoria, alexithymia, and loss of motivation for natu-

ral rewards, and is characterized in animals by increases in re-

ward thresholds during withdrawal from all major drugs of abuse.

Antireward is a concept based on the hypothesis that brain sys-

tems are in place to limit reward (Koob and Le Moal, 1997, 2005,

2008). As dependence and withdrawal develop, brain antireward

systems such as CRF, norepinephrine, dynorphin, vasopressin,

and possibly orexin are hypothesized to be recruited to produce

stress-like aversive states (Koob and Le Moal, 2001; Nestler,

2005; Aston-Jones et al., 1999) (Figure 10). The present thesis

also argues that antistress systems, such as NPY and orexin

that presumably buffer the stress response, also may be com-

promised. At the same time, decreases in reward function occur

within the motivational circuits of the ventral striatum-extended

amygdala (Figure 10). The combination of decreases in reward

neurotransmitter function, recruitment of antireward systems,

and compromised antistress systems provides a powerful

source of negative reinforcement that contributes to compulsive

drug-seeking behavior and addiction.

6.3. Stress Systems in Relapse

Although less developed except in studies with CRF and norepi-

nephrine, the brain stress systems also may contribute to the

critical problem in drug addiction of chronic relapse, where

addicts return to compulsive drug taking long after acute with-

drawal. The preoccupation/anticipation (craving) stage consists

of two processes: protracted abstinence and stress-induced re-

lapse. In animals, protracted abstinence can include increased

sensitivity to a stressor or increased drug seeking long after

acute withdrawal, both of which having been observed in alcohol

studies (Valdez and Koob, 2004). Using CRF as an example in

protracted abstinence, CRF is hypothesized to contribute to a

residual negative emotional state that provides a basis for drug

seeking (Valdez et al., 2002; Valdez and Koob, 2004).

Stress-induced reinstatement is robust and mediated by dif-

ferent elements of the same brain stress systems implicated in

drug dependence, as noted above (for review, see Shaham

et al., 2000, 2003). In stress-induced reinstatement, CRF sys-

tems in the bed nucleus of the stria terminalis are activated

when acute stressors induce relapse (Shaham et al., 2003).

CRF antagonists block stress-induced reinstatement of cocaine,

alcohol, and opioid self-administration (Erb et al., 1998; Liu and

Weiss, 2002; Shaham et al., 1998; Zislis et al., 2007). However,

stress-induced reinstatement occurs independently of stress-in-

duced activation of the HPA axis (Erb et al., 1998; Le et al., 2000;

Shaham et al., 1997). Other brain stress systems implicated in

stress-induced reinstatement include norepinephrine, orexin,

vasopressin, and nociceptin (see above). Thus, the brain stress

systems may impact both the withdrawal/negative affect stage

and preoccupation/anticipation stage of the addiction cycle, al-

beit by engaging different components of the extended amyg-

dala emotional system (central nucleus of the amygdala versus
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bed nucleus of the stria terminalis; see above), and the dysregu-

lations that comprise the negative emotional state of drug de-

pendence persist during protracted abstinence to set the tone

for vulnerability to ‘‘craving’’ by activation of the drug-, cue-,

and stress-induced reinstatement neurocircuits now driven by

a hypofunctioning, and possibly reorganized, prefrontal system

(Volkow and Fowler, 2000).

6.4. Allostasis and Addiction

An overall conceptual framework throughout this review is that

drug dependence represents a break with homeostatic brain

regulatory mechanisms that regulate the emotional state of the

animal. However, the nature of engagement of the brain stress

and antistress systems produced by repeated self-administra-

tion of drugs of abuse argues that the view of drug addiction rep-

resenting a simple break with homeostasis is not sufficient to

explain a number of key elements of addiction. Drug addiction,

similar to other chronic physiological disorders, such as high

blood pressure, worsens over time, is subject to significant envi-

ronmental influences (e.g., external stressors), and leaves a re-

sidual neural trace that allows rapid ‘‘readdiction’’ even months

and years after detoxification and abstinence. These character-

istics of drug addiction have led to a reconsideration of drug

addiction as more than simply homeostatic dysregulation of

emotional function but rather as a dynamic break with homeo-

stasis of these systems, termed allostasis.

Allostasis is defined as ‘‘stability through change’’ and is differ-

ent from homeostasis because feed-forward, rather than nega-

tive feedback, mechanisms are hypothesized to be engaged

(Sterling and Eyer, 1988). However, precisely this ability to mobi-

lize resources quickly and to use feed-forward mechanisms

leads to an allostatic state if the systems do not have sufficient

time to reestablish homeostasis. An allostatic state can be de-

fined as a state of chronic deviation of the regulatory system

from its normal (homeostatic) operating level.

The brain stress systems respond rapidly to anticipated chal-

lenges to homeostasis but are slow to habituate or do not readily

shut off once engaged (Koob, 1999). Thus, the very physiological

mechanism that allows a rapid and sustained response to envi-

ronmental challenge becomes the engine of pathology if

adequate time or resources are not available to shut off the re-

sponse. Thus, the interaction between CRF and norepinephrine

in the brainstem and basal forebrain, the interaction between

orexin and CRF in the hypothalamus and basal forebrain, and

the interaction between CRF and vasopressin and/or orexin

could lead to chronically dysregulated emotional states (Koob,

1999). Similar allostatic mechanisms can be hypothesized to

be involved in driving the pathology associated with the brain

stress and antistress systems in addiction (Koob and Le Moal,

2001). Repeated challenges (e.g., with drugs of abuse) lead to at-

tempts of the brain via molecular, cellular, and neurocircuitry

changes to maintain stability, but at a cost. For the drug addic-

tion framework elaborated here, the residual deviation from nor-

mal brain reward threshold regulation is termed an allostatic

state. This state represents a combination of chronic elevation

of reward set point fueled by numerous neurobiological changes,

including decreased function of reward circuits, loss of executive

control, and facilitation of stimulus-response associations, but

also recruitment of the brain stress systems and compromises
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to the brain antistress systems. All of these effects contribute to

the compulsivity of drug seeking and drug taking known as

addiction (Koob and Le Moal, 2008).

SUPPLEMENTAL DATA

The Supplemental Data can be found with this article online at http://www.
neuron.org/cgi/content/full/59/1/11/DC1/.
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